If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+5n=64
We move all terms to the left:
n^2+5n-(64)=0
a = 1; b = 5; c = -64;
Δ = b2-4ac
Δ = 52-4·1·(-64)
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{281}}{2*1}=\frac{-5-\sqrt{281}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{281}}{2*1}=\frac{-5+\sqrt{281}}{2} $
| X+44+123+x+31=180,x | | X-1=6x+5 | | 3.2x-3=2.4x+5 | | 6x2+10x=0 | | -3p+10=13 | | 4(w-3)=5+w | | x+4(x-2)=1 | | 2x-9=-12 | | 3(5x-2)^7=123 | | 5-m/6=17 | | 2x+×+72=180 | | 9n-22=7n | | 14n+21=12n+18 | | 2x+24=87 | | 8/9m-1/9=3/72 | | 2(10-y)+4y=30 | | x/9+6=18 | | 4(x−3)=18+x | | 63=-6d+9 | | e/8=8 | | (4x-x)*(6+x)=0 | | 3u+9=-5(u+3) | | -9x+0,95-21=19x | | x^2*2x^2=1000 | | 2b+1=b+2-1+b | | 2b+1=b+2-1+2 | | 276=108+12x | | 3y+7=3y+2-1 | | 3x+16=5/2(x+8)+8 | | -m-2=3m+5 | | 2/3x-8=11 | | 5/2-5+4x-3x=-7/5 |